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Abstract The extremely acidophilic microorganisms

Bacillus pumilus and Bacillus subtilis were isolated from

soil collected from the commercial edible oil and fish oil

extraction industry. Optimization of conditions for acidic

lipase production from B. pumilus and B. subtilis using

palm oil and fish oil, respectively, was carried out using

response surface methodology. The extremely acidic lipa-

ses, thermo-tolerant acidic lipase (TAL) and acidic lipase

(AL), were produced by B. pumilus and B. subtilis,

respectively. The optimum conditions for B. pumilus

obtaining the maximum activity (1,100 U/mL) of TAL

were fermentation time, 96 h; pH, 1; temperature, 50 �C;

concentration of palm oil, 50 g/L. After purification, a 7.1-

fold purity of lipase with specific activity of 5,173 U/mg

protein was obtained. The molecular weight of the TAL

was 55 kDa. The AL from B. subtilis activity was 214 U/

mL at a fermentation time of 72 h; pH, 1; temperature,

35 �C; concentration of fish oil, 30 g/L; maltose concen-

tration, 10 g/L. After purification, an 11.4-fold purity of

lipase with specific activity of 2,189 U/mg protein was

obtained. The molecular weight of the extremely acidic

lipase was 22 kDa. The functional groups of lipases were

determined by Fourier transform-infrared (FT-IR)

spectroscopy.

Keywords B. pumilus � B. subtilis � Palm oil � Fish

oil � Thermo-tolerant acidic lipase � Acidic lipase

Introduction

Industries and restaurants are confronted with disposal

problems due to the inefficiency of the existing anaerobic and

aerobic biological methods for the treatment of lipid-con-

taining wastewater, which has hydrophobic characteristics.

Thus, there has been constant research on bioremediation of

lipid-rich wastewater, either aerobically or anaerobically [1].

The main pollutants in fish processing industry wastewater

include particulate and dissolved organic matter, and oil and

grease residues. High concentrations of these pollutants

produce indirect impacts as they require large amounts of

oxygen for their oxidation. In shallow waters with little

movement, they may produce suboxic or even anoxic con-

ditions [2]. The treatment of lipid-rich wastewater is still a

challenge. The conventional methods are discouraged owing

to their disadvantages [3]. In recent years, enzymatic hydro-

lysis has been considered an efficient method because of the

advantages of high selectivity and specificity to yield high-

purity products. Lipases catalyze the hydrolysis of triglycer-

ides at the oil-water interface [4]. Thermophilic enzymes are

active at high temperatures by restricting the active-site

flexibility entropically. A rigidifying salt bridge favors the

activity of thermophilic enzymes at high temperatures [5].

In the present study, oil substrates (palm oil and fish oil)

were used for the production of extremely acidic lipases

from B. pumilus and B. subtilis, respectively.

Materials and methods

Sample collection

The palm and fish oils were obtained from a commercial oil

extraction factory in Chennai, India. The composition of
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palm oil was palmitic acid (44 %), oleic acid (39 %), lin-

oleic acid (10 %), and others (7 %). The fish oil contained

13.3 % EPA, 8.9 % DHA, and 15.6 % oleic acid.

Isolation of lipolytic microorganisms

Oil-contaminated soil was serially diluted, and the organ-

isms were isolated, followed by incubation for 24–48 h at

35o and 50 �C for the growth of microorganisms. Lipase-

producing microorganisms producing a clear zone of

hydrolysis on the tributyrin agar plates were incubated at

35o and 50 �C. The strain that showed the maximum

lipolytic activity was identified by 16S ribosomal DNA

(16S rDNA) sequencing and phylogenetic analysis [6].

Response surface methodology

Optimization experiments

The culture for the optimization of lipase production was

maintained by growing the organisms in the medium

containing palm and fish oil. Lipase production was opti-

mized by varying the time (24–120 h), pH (1–10), substrate

concentration (1, 3, 4, 6, 7, 8, and 10 %), and temperature

(20–60 �C). The significant factors were optimized by

response surface methodology.

Assay of lipase

Lipase activity was measured by titrimetric assay using an

olive oil emulsion as described in our work [6]. A unit of

lipase activity was defined as the amount of enzyme that

released 1 lmol of fatty acid per minute under assay

conditions.

Purification of lipase and molecular weight determination

The acidic lipase was purified using the same steps as

reported in our earlier study [6]. Protein concentration was

determined by the Lowry method [7]. The molecular

weights of TAL and AL were determined using sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) according to the method of Laemmli [8].

Characteristics of purified TAL and AL

Effect of pH and temperature of purified lipases

The effect of pH on the purified lipase was determined by

incubating the enzyme and substrate at different pHs

ranging from 1 to 10 using buffer solutions: 0.1 M HCl/

KCl buffer (for pH range 1–2), 0.1 M acetate buffer (for

pH range 3–6), 0.1 M phosphate buffer (for pH 7 and 8),

and 0.1 M Tris buffer (for pH 9 and 10). The activity of the

pH was determined by lipase assay. The stability of pH was

determined by incubating the lipase at different pH solu-

tions and various time intervals (1–4 h), and then the lipase

activity was estimated.

The effect of temperature on the purified TAL and AL

was determined by incubating the enzyme and substrate at

different temperatures ranging from 20 to 70 �C at pH 1.

The stability was determined by incubating the lipase at

different temperatures and time intervals (1–4 h), and the

lipase activity was estimated.

FT–IR analysis of acidic lipases

The functional groups present in TAL and AL were identified

using a FT-IR spectrophotometer (Perkin Elmer). The sam-

ples were made in the form of a pellet with 1-mm thickness

and 13-mm diameter, using spectroscopic grade KBr. The

spectrum was analyzed in the spectral range of 400–4,000/cm.

Results

Isolation and identification of microorganisms

Among the various microorganisms, isolates from the soil

contaminated with palm oil and fish oil that showed maximum

lipase activity (1,100 U/mL) and (214 U/mL), respectively,

were used in further studies. The 16S rDNA sequencing data

showed that the isolated organisms were B. pumilus and B.

subtilis. The nucleotide sequence has been assigned accession

no. KC921219 and was KC921218 from the NCBI GeneBank

database for B. pumilus and B. subtilis, respectively. B.

pumilus and B. subtilis were grown at extremely acidic pH 1

and at temperatures of 50o and 35 �C, respectively.

Response surface methodology (RSM)

RSM using the central composite design was employed

to determine the optimal levels of the significant

Table 1 Coded and real values of the factors tested in the RSM

experimental design

Factor TAL AL

Levels of

factors

Levels of

factors

X1 Concentration of substrate (mL/L) 40 60 20 40

X2 pH 0 2 0 2

X3 Temperature (�C) 40 60 30 40

X4 Time 72 120 48 96

X5 Maltose concentration(g/L) 5 15
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factors that affected lipase activity. The high and low

levels with the coded levels for the factors are shown

in Table 1. Based on the regression analysis of the

data, the effects of significant factors on lipase activity

were predicted by the second order polynomial func-

tion as

Lipase activity U=mLð Þ
¼ þ1; 100:00� 98:54 � A þ 67:79 � B þ 35:13 � C

� 30:29 � þ148:94 � A � Bþ 49:69 � A � C

þ 20:94 � A � Dþ 45:69 � B � C þ 3:19 � B � D

þ 33:69 � C � D� 145:99 � A2 � 169:24 � B2

� 106:74 � C2 � 7:36 � D2 ð1Þ

Lipase activity U=mlð Þ
¼ þ246:36þ 3:76 � Aþ 8:87 � B� 8:69 � C

� 1:26 � Dþ 3:42 � E þ 4:53 � A � B� 10:72 � A � C

� 1:34 � A � D� 2:91 � A � E þ 4:97 � B � C

� 2:53 � B � D� 6:47 � B � E þ 7:97 � C � D

þ 11:78 � C � E þ 5:41 � D � E � 5:03 � A2

� 24:23 � B2 � 11:59 � C2 � 7:26 � D2 � 20:43 � E2

ð2Þ

where A, B, C, D, and E are time, pH, temperature, sub-

strate concentration, and maltose concentration, respec-

tively: Eq. (1) for TAL from palm oil and Eq. (2) for AL

from fish oil, respectively.
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Fig. 1 Response surface curve for thermostable acidic lipase activity (U/mL) by B. pumilus as the function of a time (h) and pH, b time (h) and

temperature (�C), c pH and temperature (�C), and d pH and substrate concentration (g/L)
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Analysis of variance (ANOVA) for the response surface

quadratic model for TAL and AL

ANOVA (partial sum of squares—type III)

The statistical significance of the equation was checked by

the F test and ANOVA for the second order polynomial

model. The analysis of the factor (F test) showed that the

second order polynomial model was well adjusted to the

experimental data, and the coefficient of variation (CV)

indicated the degree of precision of the experiment.

In general, the higher the value of the CV was, the lower the

reliability of the experiment. Here, a lower value of CV, 10.12

and 7.58 for TAL and AL, respectively, indicated better pre-

cision and reliability of experiments [9]. The precision of a

model can be checked by the regression coefficient (R2). The

regression coefficient was calculated to be 0.9620 for TAL and

0.9521 for AL, indicating that 96.20 and 95.21 % of the vari-

ability in the response could be explained by this model. Linear

and quadratic terms were both significant at the 1 % level.

Localization of optimum conditions

The contour plots described by the regression model were

drawn to illustrate the effects of the independent factors

and interactive effects of each independent factor on the

response factors. It also showed the optimum conditions

required for the maximum production of lipase were time,

96 h; temperature, 50 �C; pH, 1.0; substrate concentration,

5 % for TAL (Fig. 1); time, 72 h; temperature, 35 �C; pH,

1.0; substrate concentration, 3 %; maltose concentration,

10 g/L for AL (Fig. 2). Each figure presented the effect of

two factors, while the other factor was held at the zero

level.

Purification of TAL and AL

The TAL and AL were purified by ammonium sulfate

precipitation and DEAE cellulose column chromatography.

The specific activity of the purified lipases were found to

be 5,173 U/mg protein and 2,189 U/mg protein. The
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Fig. 2 Response surface curve for acidic lipase activity (U/mL) by B. subtilis as the function of a time (h) and pH, b time (h) and temperature

(�C), c pH and temperature (�C), and d pH and maltose concentration (g/L)
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molecular mass of the protein was found to be 55 kDa for

TAL and 22 kDa for AL (Fig. 3) evaluated with SDS-

PAGE.

Characteristics of TAL and AL

Effect of pH and temperature on lipase activity

The TAL and AL produced by B. pumilus and B. subtilis

show the maximum relative activity at very acidic pH 1.

The lipase activity was reduced with an increase in pH. The

study illustrated that the TAL and AL produced in the

present investigation had high activity at very acidic con-

ditions. About 100 % of relative lipase activity was

observed at a very acidic pH (pH 1) (Fig. 4a). The relative

lipase activity was reduced to 50 % when the pH was

increased. The stability at pH 1 suggests that lipase was

found to be acidic in nature (Fig. 5a).

The activity of the purified lipase was determined at

different temperatures from 20 to 60 �C. The maximum

activity was observed at 50 �C for TAL and 35 �C for AL;

the activity was reduced at other temperatures. The TAL

enzyme remains active even at higher temperature. TAL

derived from B. pumilus was found to be active in the

temperature range 50–60 �C (Fig. 4b). Stability studies

show that the purified TAL was found to be highly stable

(100 %) at 50 �C. The results show that TAL was highly

stable at elevated temperature and at extremely acidic pH.

Acidic lipase derived from Bacillus subtilis was found to

be active in the temperature range 30–40 �C (Fig. 5b).

Stability studies show that the purified acidic lipase was

found to be highly stable (100 %) at 35 �C. The results

conclude that acidic lipase was highly stable at 35 �C

temperature and at extremely acidic pH.

FT–IR spectrum of purified acidic lipases

The FT–IR spectrum of purified acidic lipase from B. sub-

tilis is shown in Fig. 6a. The spectrum shows major

stretching bands owing to the peptide group occurring in

the spectral region 1,200–1,700/cm. The band at 3,427.69/

cm is due to the C=O stretching vibrations of amide I. The

bands at 1,237.80 and 1,457.25/cm are attributed to NH

bending and C–N stretching vibrations. The bands at

2,925.84 and 2,854.48/cm are attributed to stretching of

methylene C–H asym./sym.

The sharp peak at 17,420.35/cm is due to the presence of

alkyl carboxylate (C=O stretch), which gives the lipase its

Fig. 3 SDS-PAGE showing the molecular weight of purified ther-

mostable acidic lipases. Lane 1 molecular weight marker, lane 2

purified TAL (55 kDa), lane 3 purified AL (22 kDa)
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Fig. 4 Relative lipase activity and stability of purified TAL at

different a pHs and b temperatures
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acidic nature. The bands at 1,645.22 and 1076.60/cm are

attributed to NH bending and CN stretching of the primary

amine, respectively.

The FT-IR spectrum of the purified TAL is shown in

Fig. 6b. The spectrum shows major stretching bands owing

to the peptide group occurring in the spectral region

1,200–1,700/cm. The band at 1,643.71/cm is due to the

C=O stretching vibrations of amide I. The bands at

1,237.80 and 1,465.74/cm are attributed to NH bending and

C–N stretching vibrations [10]. The sharp peak at

17,460.87/cm is due to the presence of alkyl carboxylate

(C=O stretch), which gives the lipase its acidic nature.

Discussion

In the present study, we produced thermo-tolerant acido-

philic lipase and acidic lipase from thermo-tolerant B.

Pumilus and B. subtilis by utilizing palm oil and fish oil as

substrates. The strain was identified using 16S rDNA

sequencing and phylogenetic analysis. The strain B.

pumilus produced 1,100 U of lipase activity per mL of

medium at optimum conditions of time, 96 h; pH, 1;

temperature, 50 �C; substrate concentration (palm oil), 5 %

(Fig. 2). The strain B. subtilis produced 214 U of lipase

activity per mL of medium at the optimum conditions of

time, 72 h; pH, 1; temperature, 35� C; substrate concen-

tration (fish oil), 3 %; maltose concentration, 1 % (Fig. 3).

Approximately 7.1-fold purification with 10.1 % recovery

of TAL and 11.4-fold purification with 38 % recovery of

acidic lipase were achieved, which were higher than

reported by earlier researchers [11, 12]. The purified lipase

was active at extremely acidic pH 1 and at a temperature of

50 �C for TAL and 35 �C for AL (Fig. 4). The extremely

acidic lipases (pH 1) produced using Bacillus species were

novel when compared to other reported acidic lipases

active at pH 1.5 [13] and pH 3.5 [14]. The functional

groups of purified lipases were identified by FT–IR spec-

troscopy (Fig. 6).
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